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We represent a method to diagonalize a superconducting Hamiltonian in the presence of a vortex lattice, that
employs only smooth gauge transtformations. It renders the Hamiltonian to be periodic and enables the treatment of vortices ot
finite radii. The charge response c,,, which is proportional to the Hall conductivity, is calculated using the Streda formula. The
results reveal a quantized contribution to c,, due to the formation of bound states, proportional to the system’s Chern number.
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1THE PHYSICAL SYSTEM ALMOST ANTI-SYMMETRIC GAUGE
e (Qur setup consists vortex superlattice imposed on top of the electronic lattice e The superconducting phase is accompanied by a vector potential that corre-
of a chiral p, + ip, superconductor.|1] spond to a homogeneous magnetic field and fulfill
: : 1
Figure 1: A magnetic field Jr)=J(r+71i) = A(r + 1) = A(r) + -V [@’(r ) — @/(r)] (6)
penetrating through vortices is .
depicted by blue field lines. e We dub it the almost anti-symmetric gauge (AAG):
Red field lines represent screen- A 2B, N (1 X 1) X # | (r x #3) X 71
ing Currenté. 7'1. and T2 span T aia0 sz(&]L — ) | g+ 1 | . _ (7)
the magnetic unit cell. r; and The AAG he Land |
ro are positions of the vortices. ° © VS: the Landau gauge: 3
e The supercurrents in system are described by Vector potential A(r) = 2p2o (ﬁ’ _) A(r) = 2pPo (T )
1 Total fl b =3¢ 1 <p< 1 b = qd 1 <p<
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where A, ©, me, p, po and c.a;y are t.h.e V?CtOI‘ pot.entlal, superconducting phase, 4 QUASI—PARTICLE BANDS )
\_ electron mass, charge density, equilibrium density and charge response. Y
e We use the following Bloch wave to obtain the
r R I :
HAMILTONIAN AND ORDER PARAMETER clectronic band structure:
1k R
e The p, £+ ip, BAG Hamiltonian in the tight-binding approximation (taking Pk,s(T) = VNN, Z R+ 7, s)
h =c=e =1) consists of three term, H =T + A — uN with R
tir/2 R = Ry ,my = MiT1 + maTo
e i rt+a; i A.dl Coherence length, &
— ¢ Z ™ ¢r+az brs + huc, L — 1L _ 21y . 272 2 3.5
r,S,1 oo N1|T1‘ N2|T2| 3.0
- AL wave = A +ip(T, ay +h.c., (2) Figure 2: (Top) Quasi-particle bands as func-
¢ p- pxp ¢ —I—az¢ 2.5
tion of the coherence length, for a pinned vor-
- - i rrtagg. tex lattice in a p-wave superconductor. The
A ) — A tiArg(a) iO(r) 3 fr‘|‘ \VAC) d£. D P
eFim/2 (T a) o(r)e c c magnetic unit cell contains 10 X 11 atomic sites
A ~ . . . d the vortices are placed along its diagonal
— T, A and uN are the h ling and on-sit . -
, A and uN are the hopping, coupling and on-site energy terms with maximal separation. We take ¢ — |A| —
— 2l and 1, are fermionic creation and annihilation operators. 1 = 1. (Bottom) The electronic band structure
— t,Ap and p are the hopping amplitude, order-parameter magnitude and of a p-wave superconductor with the coherence 001 | | | |
chemical potential. \length set to § = 2. L M/
—r, s = + 1] and a; = a;7; with ¢+ = 1,2 are the lattice vector, spin
projection and primitive vectors. i CHARGE RESPONSE h
_ +iArg(a) . . : _ : : n - - _
Tfhehfactor € 1ih with Ari (r) - Arg (x +231/) 15 ((11uebto the p=rip symmetry ® C;, 1s manifested in the effective action by a partial Chern-Simons term S,cs =
of the gap and the superconducting gap 1S plotted above. te, fdrdt a: (V x @), with a, = A, — 8,0/2, p € {t,z,y}.[2]
; 'P-Fclz . . iO(r) L (rta _ . .
. A-dt io the Peierls phase factor and e?®Mes i * Vo4 j¢ 5 Dhase e Thus, in analogy to the Streda formula we have cuy(7) = £ 9p(r)/I0B:|5 _,
\_ factor which encodes the superconductor response. ) with p(r) = 0Ser/da; and B, = (V X a)_ . When taking the derivative in the
Streda formula, we simultaneously lip the magnetic field and all the vorticities.
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e In the presence of of a vortex lattice, the superconducting phase is O(r) = 5 i Z 1
Z,ﬁv’”l s;0(r — r;), where Ny is the number of vortices per magnetic unit cell, 1o 2
s; = £1 is the winding number of the ¢th vortex and 7oy o 0,
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O(r —r;) = i Arg(r — 7 - d 2r| . —2- g
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e We calculated it analytically and found that
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\_ revealing that it is generally non-periodic on the magnetic unit cell. Y 4
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e Stokes’ theorem implies that on a compact geometry only vortex-antivortex . —2
pairs are allowed. We demonstrate it below for a sphere. 4
o We seek a gauge that renders the superconducting phase periodic only at the 19 _4 19
atomic lattice sites, A — A + %er, A = Ae™X )y — X/ 24, 0
e If J x 2V,O — A is doubly periodic than f:JFTi J - d/ is also. Therefore, we Figure 3: (Left) ¢z, vs. u for different £&. (Right) We crudely separate the
can choose x(r) so that, ©' (r) = ©(r) + x(r) and f:+n (A + %er) .dl are magnetic unit cell average of c;, into a contribution from the vortices and a
simultaneously periodic (mod 27). contribution from the bulk. (Bottom) c;, vs. p and A. The magnetic unit

cell consists of 40 x 41 atomic sites, t = |A| = 1 and £ = 2.5. In addition, the

o We found such a gauge for a magnetic unit cells with ¢ x g+ 1 electronic sites, magnetic unit cell contains 40 X 41 sites and two vortices that are pinned on its
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x(r) =22 s:6(r, i) with diagonal, partitioning it in a ratio of 1: 2 :
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