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We represent a method to diagonalize a superconducting Hamiltonian in the presence of a vortex lattice, that

employs only smooth gauge transformations. It renders the Hamiltonian to be periodic and enables the treatment of vortices of

�nite radii. The charge response cxy, which is proportional to the Hall conductivity, is calculated using the Streda formula. The

results reveal a quantized contribution to cxy due to the formation of bound states, proportional to the system's Chern number.

The physical system

• Our setup consists vortex superlattice imposed on top of the electronic lattice
of a chiral px ± ipy superconductor.[1]

Figure 1: A magnetic �eld
penetrating through vortices is
depicted by blue �eld lines.
Red �eld lines represent screen-
ing currents. τ 1 and τ 2 span
the magnetic unit cell. r1 and
r2 are positions of the vortices.

• The supercurrents in system are described by

J =
ρ0

2me
(∇Θ− 2A)− 1

4me
(ẑ ×∇) [ρ+ cxy∇× (∇Θ− 2A)] , (1)

where A,Θ,me, ρ, ρ0 and cxy are the vector potential, superconducting phase,
electron mass, charge density, equilibrium density and charge response.

Hamiltonian and Order parameter

• The px ± ipy BdG Hamiltonian in the tight-binding approximation (taking
~ = c = e = 1) consists of three term, Ĥ = T̂ + ∆̂− µN̂ with

T̂ = −t
∑
r,s,i

ei
∫ r+ai
r A·d`ψ†r+ai,s

ψr,s + h.c.,

∆̂p-wave =
∑
r,i

∆p±ip(r,ai)ψ
†
r↓ψ

†
r+ai↓ + h.c.,

∆p±ip(r,a) = ∆0(r)e±iArg(a)eiΘ(r)e
i
2

∫ r+a
r ∇Θ·d`.

(2)

� T̂ , ∆̂ and µN̂ are the hopping, coupling and on-site energy terms.

� ψ†r and ψr are fermionic creation and annihilation operators.

� t,∆0 and µ are the hopping amplitude, order-parameter magnitude and
chemical potential.

� r, s = ± ↑↓ and ai = aiτ̂ i with i = 1, 2 are the lattice vector, spin
projection and primitive vectors.

� The factor e±iArg(a) with Arg(r) ≡ Arg(x+iy) is due to the p±ip symmetry
of the gap and the superconducting gap is plotted above.

� ei
∫ r+ai
r A·d` is the Peierls phase factor and eiΘ(r)e

i
2

∫ r+a
r ∇Θ·d` is a phase

factor which encodes the superconductor response.

Vortex superlattice

• In the presence of of a vortex lattice, the superconducting phase is Θ(r) =∑Nv
i=1 siθ(r − ri), where NV is the number of vortices per magnetic unit cell,

si = ±1 is the winding number of the ith vortex and

θ(r − ri) = lim
M→∞

[
2M∑

m,n=−2M

Arg(r − ri −mτ 1 − nτ 2) mod 2π

]
. (3)

• We calculated it analytically and found that

θ(z) = Im

[
log

(
iϑ1

(
z

τ2
,−τ1

τ2

))
− 2iz2

τ1τ2
arctg

(
iτ1
τ2

)]
, (4)

revealing that it is generally non-periodic on the magnetic unit cell.

Smooth gauge

• Stokes' theorem implies that on a compact geometry only vortex-antivortex
pairs are allowed. We demonstrate it below for a sphere.

• We seek a gauge that renders the superconducting phase periodic only at the
atomic lattice sites, A→ A + 1

2
∇rχ,∆→ ∆eiχ, ψrs → eiχ/2ψrs.

• If J ∝ 1
2
∇rΘ −A is doubly periodic than

∫ r+τ i

r
J · d` is also. Therefore, we

can choose χ(r) so that, Θ′(r) = Θ(r) +χ(r) and
∫ r+τ i

r

(
A + 1

2
∇rχ

)
·d` are

simultaneously periodic (mod 2π).

• We found such a gauge for a magnetic unit cells with q× q+ 1 electronic sites,
χ(r) =

∑Nv
i=1 siφ(r, ri) with

φ(z, zi) = 2Re

[
(z − zi)2

τ1τ2
arctg

(
iτ1
τ2

)]
+ qπRe

(
z2

τ1τ2

)
− (q + 1)π

Im2 (z/τ2)Re (τ1/τ2)

Im2 (τ1/τ2)
− qπ Im

2 (z/τ1)Re (τ2/τ1)

Im2 (τ2/τ1)

+ π
Im (z/τ1)

Im (τ2/τ1)
+

[
2πRe

(
zi
τ2

)
− π

]
Im (z/τ2)

Im (τ1/τ2)

(5)

Almost anti-symmetric gauge

• The superconducting phase is accompanied by a vector potential that corre-
spond to a homogeneous magnetic �eld and ful�ll

J(r) = J(r + τ i)⇒ A(r + τ i) = A(r) +
1

2
∇
[
Θ′(r + τ i)−Θ′(r)

]
(6)

• We dub it the almost anti-symmetric gauge (AAG):

A =
2Φ0N

a1a2 sin2(α1 − α2)

[
(r × τ̂ 1)× τ̂ 2

q + 1
+

(r × τ̂ 2)× τ̂ 1

q

]
(7)

• The AAG vs. the Landau gauge:

Vector potential A(r) = 2pΦ0

(
y
q+1

, x
q

)
A(r) = 2pΦ0

(
−y
q+1

, 0
)

Total �ux Φ = Φ0p, 1 ≤ p ≤ q(q + 1) Φ = qΦ0p, 1 ≤ p ≤ q + 1

Quasi-particle bands

• We use the following Bloch wave to obtain the
electronic band structure:

ϕk,s(r) =
1√
N1N2

∑
R

eik·R|R+ r, s〉

R ≡ Rm1,m2 = m1τ 1 +m2τ 2

k ≡ kn1,n2 =
2πn1

N1|τ 1|
τ̂ 1 +

2πn2

N2|τ 2|
τ̂ 2

Figure 2: (Top) Quasi-particle bands as func-
tion of the coherence length, for a pinned vor-
tex lattice in a p-wave superconductor. The
magnetic unit cell contains 10×11 atomic sites
and the vortices are placed along its diagonal
with maximal separation. We take t = |∆| =
µ = 1. (Bottom) The electronic band structure
of a p-wave superconductor with the coherence
length set to ξ = 2.
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Charge response

• cxy is manifested in the e�ective action by a partial Chern-Simons term SpCS =
±cxy

∫
drdt at (∇× a)z with aµ = Aµ − ∂µΘ/2, µ ∈ {t, x, y}.[2]

• Thus, in analogy to the Streda formula we have cxy(r) = ± ∂ρ(r)/∂Bz|Bz=0

with ρ(r) = δSeff/δat and Bz = (∇× a)z. When taking the derivative in the
Streda formula, we simultaneously �ip the magnetic �eld and all the vorticities.
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Figure 3: (Left) cxy vs. µ for di�erent ξ. (Right) We crudely separate the
magnetic unit cell average of cxy into a contribution from the vortices and a
contribution from the bulk. (Bottom) cxy vs. µ and ∆. The magnetic unit
cell consists of 40 × 41 atomic sites, t = |∆| = 1 and ξ = 2.5. In addition, the
magnetic unit cell contains 40× 41 sites and two vortices that are pinned on its
diagonal, partitioning it in a ratio of 1 : 2 : 1.
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